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Abstract

Ulix is a Unix-like operating system specially designed for educational pur-
poses. In Unix, pipes are used for inter-process communication. While
anonymous pipes only reside in memory, named pipes are represented as
special files in the file system. The thesis covers the implementation of both
named and anonymous pipes for the Ulix OS. A virtual file system is created
and exported to user land to provide an interface to debug and introspect
pipes. The Literate Programming paradigm is used to describe in detail how
pipes can be implemented in a Unix-like operating system.
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Chapter 1

Introduction

1.1 The Ulix Operating System

Ulix is a Unix-like operating system developed by Hans-Georg Eßer and
Felix Freiling at the University of Erlangen-Nuremberg. It has been created
specially for educational purposes and is written using Literate Program-
ming, a programming paradigm in which the explanation of the program
becomes the key part, and the actual source code is embedded into the ex-
planation. An introduction to Literate Programming is given in section 1.2.

Ulix itself is implemented in the C programming language and falls back
to assembler code when necessary. It targets the i386 CPU architecture. Al-
though Ulix is not meant to be used as a general-purpose operating system,
it still has features found in modern operating systems, including virtual
memory, paging, virtual file systems, processes and threads, and multi-user
support.

The source code as well as the book The Design and Implementation of
the Ulix Operating System [EF15] will be available at http://ulixos.org/.
(No public version was released at the time of writing.)

1.2 Literate Programming

The Literate Programming paradigm was first described by Donald E. Knuth.
In his paper from 1984, he writes: “Instead of imagining that our main task
is to instruct a computer what to do, let us concentrate rather on explaining
to human beings what we want a computer to do.” [Knu84]
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CHAPTER 1. INTRODUCTION 2

When programming in the traditional way, the source code of a program
is annotated with comments which describe what a code block does, how it
is implemented, or why a particular solution was chosen. Because the source
code is designed to be interpreted by a compiler, it is subject to certain
constraints. In C, for example, a function can only be called when it has been
declared or implemented beforehand, global structures can only be defined
in the top-level scope, and once a structure has been defined, it is impossible
to alter the structure to add another element to it. These constraints make
it hard for a human to read and understand the program when reading it
from top to bottom, so jumping inside the source code document becomes
inevitable. This is distracting and interrupts the flow of reading.

Literate Programming solves this problem. In a literate program, the
documentation and explanation is the main component of the program. A
literate program is written in a natural language and is supposed to be read
like a book, without the need to jump between pages. The actual source
code is embedded in the text. To avoid jumps, code chunks are used, which
are pieces of code that have a name. Throughout the document, a code
chunk can be referred to by its name, and a code chunk can be embedded
into another code chunk. It works like a macro in the preprocessor of the C
language. Whenever a code chunk is included in another chunk, the inclusion
statement is replaced with the actual content of the included code chunk.
Because it is possible to append code to an already existing code chunk,
a literate program does not have to follow the order that is required by a
compiler. For example, a struct definition may contain a code chunk named
struct elements, and later on in the program, a new element can be added
to the structure by appending code to that code chunk.

.c / .h.c / .h

.nw

.tex .c / .h

weaving tangling

Figure 1.1: Weaving and tangling the literate program to generate documen-
tation and source code files
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Obviously, a compiler does not know how to interpret a literate program
where the code is contained in code chunks. The literate program must first
be translated into source code the compiler understands. Knuth calls this
process tangling. A tool reads the literate program, extracts and resolves
the code chunks, and finally outputs a source code file for the compiler.
Analogously, there is a weaving process which takes a literate program and
generates a documentation document out of it, mostly LATEX or HTML.
The same literate program is used to extract both the source code and the
documentation. Figure 1.1 illustrates this process.

1.3 Pipes

In Unix-like systems, pipes are a mean of inter-process communication. Pro-
cesses use pipes to communicate with each other. One process writes data
into a pipe, another process reads that data from the pipe. A command
pipeline in a Unix shell is a high-level usage of pipes. The pipeline

dmesg | grep eth0 | wc -l

consists of three commands. The shell starts all of them at the same time and
connects them using pipes. A pipe is set up to redirect the standard output
of the dmesg command to the standard input of the grep command, which
results in grep reading the output of dmesg. The same is done between grep

and wc. Because wc is last in the pipeline, its output is printed by the shell.
In the end, this pipeline prints the number of kernel messages containing the
term eth0.

There are two types of pipes: anonymous pipes and named pipes.
An anonymous pipe is created by a process using the pipe function.

This function returns two file descriptors—the first one connected to the
read end, the second one connected to the write end of the pipe. Because
file descriptors are used to specify a pipe, a process can only communicate
with processes it shares these file descriptors with—namely with its ancestor
processes, its child processes, and with itself. Thus, anonymous pipes cannot
be used to allow two arbitrary processes to communicate since they do not
share file descriptors.

A named pipe, or a FIFO (first in, first out), appears as a special file
in the file system. Any process with sufficient access privileges can open
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that file for reading or writing. After opening, a named pipe has the same
semantics as an anonymous pipe. Even though it is present in the file system,
data written into a named pipe is not persisted on the file system. The main
purpose of the file system entry is to address the named pipe.

1.4 Scope of the Thesis

In the thesis the Ulix operating system is extended by adding support for
both anonymous and named pipes to the kernel. The implementation is
based on Ulix version 0.12. First, in chapter 2, a summary of the semantics
of a pipe according to the POSIX specification is given. The design and
architecture of the implementation is presented in chapter 3. The main part
of the thesis is dedicated to the implementation in chapter 4, which, like
Ulix itself, is written using Literate Programming. The final chapter 5
gives a summary of the work done in the thesis.



Chapter 2

Semantics of a Pipe

This chapter describes the semantics of a pipe. The description is based on
the POSIX.1-2008 specification. [IG08]

2.1 Data Flow

A pipe is a unidirectional, or one-way, communication channel between pro-
cesses with a read end and a write end. Data written into the write end of
the pipe is read at the read end. If two processes A and B want to commu-
nicate with each other in a bidirectional manner, they have to use two pipes:
one to send data from A to B, and another one to send data from B to A.

Data sent through a pipe is buffered by the kernel, it is never directly
copied from the writing process’ memory to the reading process’ memory.
A pipe buffer must be at least 512 bytes in size. In the Linux kernel, for
example, the size of a pipe buffer can be up to 64 kilobytes.1

A pipe has FIFO (first in, first out) characteristics. Data is always read
in the same order it is written into a pipe.

2.2 Creating and Opening a Pipe

An anonymous pipe is created by issuing the pipe function.

5 〈POSIX: pipe function prototype 5〉≡
int pipe(int fildes[2]);

1See PIPE_BUF defined in include/uapi/linux/limits.h and PIPE_DEF_BUFFERS de-
fined in include/linux/pipe_fs_i.h of the Linux 3.18 source code

5



CHAPTER 2. SEMANTICS OF A PIPE 6

The function expects an int array of size two as its only argument. Upon
returning, the first element of that field contains the file descriptor for the
read end of the pipe, and the second element contains the file descriptor for
the write end of the pipe. A successful call returns 0, on error, -1 is returned.
There is no need to explicitly open a pipe for reading or writing, the returned
file descriptors are ready to be used.

To create a named pipe, the mkfifo function is used.

6 〈POSIX: mkfifo function prototype 6〉≡
int mkfifo(const char *path, mode_t mode);

As named pipes have a name on the file system, the first argument path
of the function specifies the path on the file system where that name shall be
created. The file entry is created with the mode given in the mode argument.
On success, 0 is returned, an error is indicated by a return value of -1.

In contrast to the pipe function to create and open an anonymous pipe
at the same time, mkfifo just creates a named pipe. A named pipe must
explicitly be opened by calling the open function. The second argument of
open is a flag parameter, which is used to tell the kernel whether to open the
read end or the write end of the pipe. The flag O_RDONLY opens the read end,
while O_WRONLY opens the write end of the named pipe. Trying to open a
named pipe for both reading and writing by setting the O_RDWR flag returns
an error.

The call to open may block. When opening a pipe for reading and there
is no other process which has opened the pipe for writing (i.e. there is no file
descriptor connected to the write end), open blocks until a process requests
to open the pipe for writing. Analogously, when a process wants to open a
pipe for writing and there are no readers, open blocks, too.

Theoretically, there is no limit on the number of processes which can open
a single named pipe for either reading or writing. It is also valid for a process
to open a named pipe for reading and writing by calling open twice. Once
opened, an anonymous pipe and a named pipe behave identically, there is
no difference between them. The functions for reading, writing, and closing
a pipe all use the file descriptor returned by either pipe or open to refer to
the pipe.
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2.3 Reading from a Pipe

Reading from a pipe is done using the standard read function.

7a 〈POSIX: read function prototype 7a〉≡
ssize_t read(int fildes, void *buf, size_t nbyte);

Reading from a pipe is different from reading a regular file. If there is
no data in the pipe buffer, the read call blocks until there is data available.
If the buffer is empty and all writers closed their pipe file descriptor, read
returns 0 to indicate EOF (end of file), otherwise the amount of bytes read
is returned. The function may read less bytes than requested in the nbyte

argument if there is not sufficient data available for immediate reading.
Because reading drains the pipe buffer, the number of free bytes in the

buffer increases, so the kernel unblocks all processes which are blocked at a
write call because there was not enough free space in the buffer to complete
their write operation. These processes will then attempt to continue their
write the next time the scheduler activates them.

2.4 Writing into a Pipe

To write into a pipe, the write function is used.

7b 〈POSIX: write function prototype 7b〉≡
ssize_t write(int fildes, const void *buf, size_t nbyte);

If there is not enough free space in the pipe buffer to write nbyte bytes,
the call to write blocks until there is sufficient space available. Eventually,
write returns nbyte, the amount of bytes written. If during writing all
reading processes close their file descriptor, the writing process receives a
SIGPIPE signal, and write returns with an error if the process chooses to
ignore that signal.

Similar to reading, the kernel unblocks all processes blocked at a read
call, as writing fills the buffer and processes may now be able to read from
the pipe.

The POSIX standard demands writes of less than or equal to the size of
the pipe buffer to be atomic (see section 2.1 for the pipe buffer size). In this
case, a write call must append the data to the buffer as a single contiguous
part. It is not allowed to interleave the write with writes of other processes.
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For operations larger than the pipe buffer size, interleaving is legal behavior.
The kernel may split the operation into multiple partial writes, and between
them, other processes may read from and write into the pipe.

2.5 Closing a Pipe

Since an open pipe is referenced by a file descriptor, the standard close

function is used to close it.

8 〈POSIX: close function prototype 8〉≡
int close(int fildes);

If there are no other readers and writers connected to the pipe, the final
close destroys the pipe. Thus, all buffered data that was written into a
pipe, but has not been read yet, is lost. For a named pipe, the file system
entry created with the mkfifo function is not deleted. That entry can be
unlinked (removed) with the unlink function.

2.6 Pipe Status

Like a regular file, a pipe also has status information. This information
can be queried with the stat and fstat functions. As the stat function
requires a path to the file for which to return status information, it is used
for a named pipe. The fstat function takes a file descriptor in favor of a file
path and thus is used to receive status information for an anonymous pipe
or an opened named pipe.

When data is read from a pipe, its access time, or atime for short, is set
to the current time. When data is written into a pipe, its modification time
(mtime) and change time (ctime) are updated.

2.7 Unsupported File Operations

Not all functions which operate on file descriptors can be used with a pipe.
In Ulix, there are three functions which return an error when called with a
file descriptor associated with a pipe.

The lseek function sets the read/write position of an opened file. Since
a pipe has FIFO semantics, the read position is always the beginning of the
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pipe buffer and the write position is always the end of the buffer’s content.
Both cannot be changed.

The truncate function and its file descriptor companion ftruncate trun-
cate a file to a given length. The POSIX standard does not specify the be-
havior of these functions when called with a path to a named pipe or a pipe
file descriptor, but the Linux, FreeBSD, and Mac OS X operating systems
all return with an error in that case. When considering that these functions
modify the pipe’s content and violate the first-in first-out semantic, this is a
sane decision.



Chapter 3

Implementation Design

3.1 Unifying Anonymous and Named Pipes

As described in chapter 2, anonymous and named pipes behave similarly once
they are created or opened. To simplify the implementation of both in the
operating system, it makes sense to unify them as much as possible. Ideally,
the implementation code should not have to determine the type of the pipe
and run different code paths depending on whether it is an anonymous or
named pipe.

The main difference between a named and an anonymous pipe is that a
named pipe has an entry in the file system. In the Minix file system, the one
used in Ulix as the root file system, the file system entry is an inode. Using
the inode to address a named pipe is not its only purpose, it is also used to
store status information about the pipe (see section 2.6 Pipe Status). But it
is not that only a named pipe has status information, an anonymous pipe has
it, too. Because having two different locations to keep status information for
both pipe types does not help unifying them, we also associate an anonymous
pipe with an inode. This way, we make an anonymous pipe to look like a
named pipe, with the only difference that the inodes are stored in different
locations. Most implementation code does not have to check the type of the
pipe and run different code. This simplifies the implementation and makes
sure both kinds of pipes behave identically.

10
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3.2 The Pipe File System

For now, we do not have a location where we store the inodes for an anony-
mous pipe. For a named pipe, the location of the inode is obvious since the
user specifies a path when running the mkfifo function or command line
program, but for anonymous pipes we have to choose a location. We could
store the inodes in a directory on the root file system, /var/run/pipes for
example, but doing so has two problems. First, the root file system is per-
sistent, which means that the pipe inodes would be persisted, too. Since
anonymous pipes are memory-only, they should not survive system reboots.
Second, and most important, we would have to prevent users from reading,
writing, and deleting these inodes. Because the Unix file access permissions
would not be sufficient here since the root user could always change the per-
missions, we would have to modify the file system code in the kernel in order
to prevent these actions.

The solution to this is to create a separate file system—the pipe file
system—which only resides in memory and is used to store inodes of anony-
mous pipes. Since it is memory-only, its content does not survive reboots,
and because it is a new file system, we can decide how reading, writing, and
all other file operations are implemented. It is similar to the /proc file sys-
tem on Linux system in the way that its files do not exist on disk and that
it allows to retrieve runtime information. [TB15]

Alongside being the place where we store the inodes for anonymous pipes,
the pipe file system also acts as a bridge between user mode and the kernel-
internal pipe data structures. Programs in user land refer to pipes using file
descriptors. The pipe file system provides these file descriptors and maps
them to the underlying internal pipe data structure. Its job is also to manage
the lifecycle of a pipe. It creates new pipes, allocates inodes for anonymous
pipes, and when it determines that a pipe is no longer used, it takes care of
the pipe’s disposal.

The pipe file system is a real file system in the sense that it has a directory
tree and is mounted into the root file system of the OS. Each anonymous
pipe created is represented by a file entry in the pipe file system. Using these
entries, it is possible to debug and introspect anonymous pipes from outside
the process which created them. Figure 3.1 shows a possible listing of the
root directory of the pipe file system with entries for two anonymous pipes.
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The file mode f (in contrast to p used in other operating systems) indicates
a named pipe (FIFO) and the size represents the number of bytes inside the
pipe buffer.

1 dr-xr-x--- 1 0 0 0 1 Jan 1970 .

2 dr-xr-x--- 1 0 0 0 1 Jan 1970 ..

3 frw------- 1 1000 100 5 19 Mar 2015 3

4 frw------- 1 1000 100 16 19 Mar 2015 4

Figure 3.1: Possible listing of the root directory of the pipe file system

The idea to back the implementation of pipes by a file system is not new.
The Linux kernel uses a special file system called pipefs to implement pipes,
but in contrast to our pipe file system, the one in Linux is not accessible in
user land as it is only mounted in kernel space. In fact, the Linux kernel
has many more special file systems, for example it also has a sockfs for
sockets. Considering the Unix philosophy Everything is a file, it makes sense
to manage them with file systems. [BC02]

3.3 The Generic Pipe Data Structure

The fundamental data structure in our implementation is a generic pipe.
Since we unified anonymous and named pipes, the generic pipe is used for
both types. The generic pipe implements the semantics described in chap-
ter 2: it provides the buffer for the data, it provides an interface for reading
and writing, taking into account whether it is an atomic or non-atomic oper-
ation, and synchronizes access to the pipe data structure including blocking
and unblocking of threads. The generic pipe is a kernel-only data structure,
it is not exported to user land and user mode programs cannot use it. The
higher-level interfaces for interacting with pipes use the generic pipe data
structure and functions.

3.4 Architecture Overview

The implementation of pipes in Ulix can be divided into three layers. The
highest layer, the layer users interact with, is the virtual file system (VFS). It
is already present in Ulix and is responsible for dispatching the generic file
operation system calls like read, write, open, and close to their respective
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lower-level implementation. In case of a pipe, when read is called with a
pipe file descriptor, the VFS delegates to the pipefs_read function of the
pipe file system, which forms the intermediate layer. The pipe file system, in
turn, calls the pipe_read function of the underlying generic pipe. Figure 3.2
illustrates the call path.

read(1039, buf, len)

pipefs_read(15, buf, len)

pipe_read(pipe, buf, len)

Figure 3.2: Call path when reading from a pipe

The system calls for creating pipes (pipe and mkfifo) do not belong to
the VFS, but are still considered to be part of the highest layer since they
provide an interface from user mode to the kernel.



Chapter 4

Implementation

4.1 Generic Pipe

4.1.1 The pipe Data Structure

The pipe structure describes a generic pipe.

14a 〈type definitions 14a〉≡
struct pipe {
〈pipe structure elements 14b〉

};

In section 3.1 we unified anonymous and named pipes by associating both
with an inode. We store a reference to that inode. As we design the pipe file
system to look like a Minix file system, we reuse the internal data structure
for a Minix inode already present in Ulix.

14b 〈pipe structure elements 14b〉≡
struct int_minix2_inode *inode;

A pipe is a buffered communication channel, so we need a pointer to
memory used for the buffer. We keep track of the number of bytes inside the
buffer.

14c 〈pipe structure elements 14b〉+≡
void *buf;
size_t len;

Multiple processes may open a single pipe for reading or writing, but only
one process is allowed to access the pipe at the same time. We use a mutex
to synchronize access. Further, as opening a named pipe and I/O operations

14
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may block, we need several queues to keep track of processes blocked at
those operations. To be able to tell when a pipe is no longer used and when
opening is allowed, we count the number of reading and writing processes as
well as the number of processes wanting to open the pipe.

15a 〈pipe structure elements 14b〉+≡
unsigned int nreaders, nwriters, nopenread, nopenwrite;
lock lock;
blocked_queue read_bq, write_bq, open_bq;

Some elements need to be initialized before they can be used. The
pipe_init function initializes them.

15b 〈function prototypes 15b〉≡
int pipe_init(struct pipe *);

15c 〈function implementations 15c〉≡
int pipe_init(struct pipe *p) {
〈initialize pipe structure 15d〉
return 0;

}

At the beginning, a pipe has no reading and no writing processes, no
processes wanting to open the pipe and no data buffered.

15d 〈initialize pipe structure 15d〉≡
p->nreaders = p->nwriters = 0;
p->nopenread = p->nopenwrite = 0;
p->len = 0;

For the buffer we request a new memory page from the kernel. We define
the size of the pipe buffer to be the size of a memory page, so allocating a
single page is all we have to do.

15e 〈constants 15e〉≡
#define PIPE_BUF PAGE_SIZE

15f 〈initialize pipe structure 15d〉+≡
p->buf = request_new_page();
if (p->buf == NULL) return -1;
p->len = 0;

The block queues have to be initialized, too.

15g 〈initialize pipe structure 15d〉+≡
initialize_blocked_queue(&p->read_bq);
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initialize_blocked_queue(&p->write_bq);
initialize_blocked_queue(&p->open_bq);

Ulix already provides a locking mechanism. We do not request a new
lock from the kernel every time a pipe is initialized, we do it once when
the operating system initializes because the lock is already needed before
pipe_init is called.

16a 〈initialize kernel global variables 16a〉≡
for (int i = 0; i < MAX_PIPES; i++) {
if ((pipes[i].lock = get_new_lock("pipe lock")) == NULL) {
printf("error: cannot get lock for pipe %d\n", i);

}
}

4.1.2 Creating a New Pipe

The kernel manages a fixed number of pipe structures.

16b 〈global variables 16b〉≡
struct pipe pipes[MAX_PIPES] = {{ 0 }};

16c 〈constants 15e〉+≡
#define MAX_PIPES 256

When creating a new pipe we iterate through the pipes and pick the first
one that is not used. To tell whether a pipe is in use or not we add a used

element to the pipe structure. If there is no unused pipe, we return NULL.
In case a free pipe is found, we mark it as used, initialize it, and return a
pointer to the structure.

16d 〈pipe structure elements 14b〉+≡
int used;

16e 〈function prototypes 15b〉+≡
struct pipe *pipe_new(struct int_minix2_inode *inode);

16f 〈function implementations 15c〉+≡
struct pipe *pipe_new(struct int_minix2_inode *inode) {
for (int i = 0; i < MAX_PIPES; i++) {
struct pipe *p = &pipes[i];
mutex_lock(p->lock);
if (!p->used) {
if (pipe_init(p) == -1) {
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mutex_unlock(p->lock);
return NULL;

}
p->used = 1;
p->inode = inode;
inode->pipe = p;
mutex_unlock(p->lock);
return p;

}
mutex_unlock(p->lock);

}
return NULL;

}

The new pipes stores a reference to the inode that is used for the pipe,
but the inode references the pipe as well. The int_minix2_inode structure
in Ulix does not have a pipe member, we have to add it. Unfortunately,
there is no code chunk we can use to add a new member to the structure.
Therefore, we replace code chunk 423a defined on page 423 in the Ulix book
with the following one:

17a 〈code chunk 423a replacement 17a〉≡
struct int_minix2_inode {
〈external minix2 inode〉
int ino;
unsigned int refcount;
unsigned short clean;
short device;
〈int_minix2_inode structure elements 17b〉

};

By including a code chunk we can now introduce new structure elements
easily.

17b 〈int_minix2_inode structure elements 17b〉≡
struct pipe *pipe;

4.1.3 Reading and Writing

To read data from a pipe we add a pipe_read function.

17c 〈function prototypes 15b〉+≡
int pipe_read(struct pipe *p, void *buf, int nbyte);

17d 〈function implementations 15c〉+≡
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int pipe_read(struct pipe *p, void *buf, int nbyte) {
〈pipe_read implementation 18a〉

}

First, we validate the arguments and return an error if they are invalid.
Reading zero bytes always succeeds. We acquire the lock to ensure we are
the only process using the pipe right now.

18a 〈pipe_read implementation 18a〉≡
if (nbyte < 0) { set_errno(EINVAL); return -1; }
if (nbyte == 0) return 0;
mutex_lock(p->lock);

The read function reads what is inside the pipe buffer, but it never reads
more than nbyte bytes. If, for example, 120 bytes are requested, but there
are only 100 bytes in the buffer, 100 bytes are read. The function returns
immediately and does not block and wait for the remaining 20 bytes. It
returns the number of bytes read. A special case is when there is no data
in the buffer. In that case, the read function blocks until data is available,
but only if there are any processes which have opened the pipe for writing
or want to open the pipe for writing. If there is no data and there are no
writers, the function leaves the reading loop and thus returns 0, indicating
EOF (end of file).

18b 〈pipe_read implementation 18a〉+≡
int nread = 0;
for (;;) {
if (p->len > 0) {
int toread = MIN(p->len, nbyte);
〈pipe_read: copy toread bytes from pipe 19a〉
nread = toread;
〈pipe_read: unblock writers and update time 19b〉
break;

} else if (p->nwriters > 0 || p->nopenwrite > 0) {
〈pipe_read: block process reading from pipe 19c〉

} else {
break;

}
}

We use memcpy to copy the pipe buffer data to user memory and to adjust
the pipe buffer by moving the remaining data to the front. Strictly speaking,
we should use the memmove function to adjust the buffer because source and
destination memory may overlap, but in Ulix, memcpy is implemented in
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a way that works correctly with overlapping memory, so using it here is
legitimate.

19a 〈pipe_read: copy toread bytes from pipe 19a〉≡
memcpy(buf + nread, p->buf, toread);
memcpy(p->buf, p->buf + toread, p->len - toread);
p->len -= toread;
p->inode->i_size -= toread;

After reading we unblock all processes which are in the pipe write block
queue so they can continue their write operation since there is now space
available in the buffer. We also set the inode’s access time to the current
system time.

19b 〈pipe_read: unblock writers and update time 19b〉≡
while (p->write_bq.next != 0) {
deblock(p->write_bq.next, &p->write_bq);

}
p->inode->i_atime = system_time;

If the process needs to be blocked, we release the pipe mutex before
appending it to the read block queue. Once the process is unblocked and
resumes, we re-acquire the lock. The 〈resign〉 code chunk is part of the Ulix

scheduler.

19c 〈pipe_read: block process reading from pipe 19c〉≡
mutex_unlock(p->lock);
block(&p->read_bq, TSTATE_WAITIO);
〈resign〉
mutex_lock(p->lock);

Finally we release the mutex and return the number of bytes read.

19d 〈pipe_read implementation 18a〉+≡
mutex_unlock(p->lock);
return nread;

Writing data into a pipe using the pipe_write function is basically the
same as reading, we just put data inside the buffer instead of removing data.
Additionally, we have to keep atomicity in mind.

19e 〈function prototypes 15b〉+≡
int pipe_write(struct pipe *p, void *buf, int nbyte);

19f 〈function implementations 15c〉+≡
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int pipe_write(struct pipe *p, void *buf, int nbyte) {
〈pipe_write implementation 20a〉

}

First, we check the arguments. Reading zero bytes always succeeds.

20a 〈pipe_write implementation 20a〉≡
if (nbyte < 0) {
set_errno(EINVAL);
return -1;

}
if (nbyte == 0) return 0;

We also have to check whether there is at least one process reading from
the pipe at the time of writing. If there is not, the SIGPIPE signal is sent to
the writing process and -1 is returned with error EPIPE. We use a separate
code chunk for the checking code as the code is embedded multiple times
later on. We cannot just check it once at the beginning because the number
of reading processes can change during writing when the writing process is
blocked.

20b 〈pipe_write: check reading processes 20b〉≡
if (p->nreaders == 0 && p->nopenread == 0) {
mutex_unlock(p->lock);
u_kill(thread_table[current_task].pid, SIGPIPE);
set_errno(EPIPE);
return -1;

}

We use individual code paths to handle atomic and non-atomic write
operations.

20c 〈pipe_write implementation 20a〉+≡
mutex_lock(p->lock);
int nwritten = 0;
if (nbyte <= PIPE_BUF) {
〈pipe_write: write atomically 20d〉

} else {
〈pipe_write: write non-atomically 21d〉

}

If there is enough space in the buffer to write the given data as a con-
tiguous sequence, we append the data to the buffer.

20d 〈pipe_write: write atomically 20d〉≡
for (;;) {
〈pipe_write: check reading processes 20b〉
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if (PIPE_BUF - p->len >= nbyte) {
int towrite = nbyte;
〈pipe_write: append towrite bytes 21a〉
nwritten = nbyte;
〈pipe_write: unblock readers and update times 21b〉
break;

}
〈pipe_write: block process 21c〉

}

21a 〈pipe_write: append towrite bytes 21a〉≡
memcpy(p->buf + p->len, buf + nwritten, towrite);
p->len += towrite;
p->inode->i_size += towrite;

We unblock all processes blocked at reading and update the inode mod-
ification and change time.

21b 〈pipe_write: unblock readers and update times 21b〉≡
while (p->read_bq.next != 0) {
deblock(p->read_bq.next, &p->read_bq);

}
p->inode->i_mtime = p->inode->i_ctime = system_time;

If we cannot write atomically right now, we block the process.

21c 〈pipe_write: block process 21c〉≡
mutex_unlock(p->lock);
block(&p->write_bq, TSTATE_WAITIO);
〈resign〉
mutex_lock(p->lock);

Writing non-atomically is simpler, we just append data to the buffer as
there is free space and return once all data has been appended.

21d 〈pipe_write: write non-atomically 21d〉≡
while (nwritten < nbyte) {
〈pipe_write: check reading processes 20b〉
if (p->len < PIPE_BUF) {
int towrite = MIN(PIPE_BUF - p->len, nbyte - nwritten);
〈pipe_write: append towrite bytes 21a〉
nwritten += towrite;
〈pipe_write: unblock readers and update times 21b〉

} else {
〈pipe_write: block process 21c〉

}
}
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At last, we unlock the mutex, and return the number of bytes written.

22a 〈pipe_write implementation 20a〉+≡
mutex_unlock(p->lock);
return nwritten;

The thread state TSTATE_WAITIO does not exist in the default Ulix

source code, so we add it.

22b 〈public constants 22b〉≡
#define TSTATE_WAITIO 12

There is no code chunk we can extend to provide a string representation
for the TSTATE_WAITIO state. We have to replace code chunk 164b defined
on page 164 in the Ulix book.

22c 〈code chunk 164b replacement 22c〉≡
char *state_names[13] = {
"-–", "READY", "-–", "FORK", "EXIT", "WAIT4", "ZOMBY",
"W_KEY", "W_FLP", "W_LCK", "STOPD", "W_IDE", "W_IO"

};

The EPIPE error constant is not defined yet as well.

22d 〈error constants 22d〉≡
#define EPIPE 32

4.1.4 Pipe Status

A pipe maintains several status information (see section 2.6 Pipe Status).
We provide a pipe_stat function which fills a stat structure for a given
pipe.

22e 〈function prototypes 15b〉+≡
int pipe_stat(struct pipe *pipe, struct stat *buf);

Almost all attributes of the stat structure have a corresponding element
in the internal inode structure.

22f 〈function implementations 15c〉+≡
int pipe_stat(struct pipe *pipe, struct stat *buf) {
struct int_minix2_inode *inode = pipe->inode;
buf->st_dev = inode->device;
buf->st_rdev = 0;
buf->st_ino = inode->ino;
buf->st_mode = inode->i_mode;
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buf->st_uid = inode->i_uid;
buf->st_gid = inode->i_gid;
buf->st_size = inode->i_size;
buf->st_atime = inode->i_atime;
buf->st_ctime = inode->i_ctime;
buf->st_mtime = inode->i_mtime;
buf->st_nlink = inode->i_nlinks;
return 0;

}

4.1.5 Freeing a Pipe

Once a pipe has no readers, no writers, and no opening requests, we can free
all the resources the pipe has allocated and put it back into the pool so they
can be reused. The pipe_free function takes care of this.

23a 〈function prototypes 15b〉+≡
int pipe_free(struct pipe *p);

23b 〈function implementations 15c〉+≡
int pipe_free(struct pipe *p) {
〈pipe_free implementation 23c〉

}

We ensure it is valid to free the pipe by checking that none of the process
counting variables is greater than zero.

23c 〈pipe_free implementation 23c〉≡
if (p->nreaders > 0 || p->nwriters > 0 ||

p->nopenread > 0 || p->nopenwrite > 0) {
return -1;

}

After ensuring that we can actually free the pipe, we release the memory
page used for the buffer and mark the pipe as unused. The release_page

function in Ulix expects the number of the page to free as its argument. We
do not have that number, we just have a pointer to the memory the page
refers to, but we get it by dividing the pointer address by the size of a page.
We do not release the lock itself because it is still necessary when searching
for an unused pipe. There is no need to free the block queues since they are
not allocated dynamically.

23d 〈pipe_free implementation 23c〉+≡
p->used = 0;
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p->inode->pipe = NULL;
p->inode->i_size = 0;
p->inode = NULL;
release_page((unsigned int)p->buf / PAGE_SIZE);
return 0;

Inside the pipe_free function it is not necessary to acquire the pipe
lock because at every point the function is called, the lock has already been
acquired.

4.2 Pipe File System

4.2.1 File Descriptors

While the generic pipe functions work with struct pipe pointers, the pipe
file system works with file descriptors. We need a way to map file descriptors
to their underlying generic pipe structure, and define a pipefs_filestat

structure for this purpose. We choose the name to match with the name of
the data structure mx_filestat in the Minix subsystem of Ulix to manage
open files. Since a file descriptor for a pipe can only be used for reading or
writing, not for both, we store the mode in the structure as well.

24a 〈type definitions 14a〉+≡
struct pipefs_filestat {
struct pipe *pipe;
short mode;

};

The operating system manages a pool of file descriptors. The array of
structures is initialized with zero, so when the operating system starts, the
pointer inside the structure is a null pointer and the mode is zero. We use
the null pointer to determine later on whether a specific entry is used or not.
A file descriptor not associated with a pipe is unused.

24b 〈global variables 16b〉+≡
struct pipefs_filestat pipefs_filestats[PIPEFS_MAX_FILES] = {{ 0 }};

24c 〈constants 15e〉+≡
#define PIPEFS_MAX_FILES 256

For now we have just defined a pool of structures, we do not have real
file descriptors yet, which, in Unix-like systems, are integers. Instead of
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assigning each pipefs_filestat in the pool a unique number, we use the
index of the structure in the pool array as the file descriptor. Keep in mind
that these file descriptors are local to the pipe file system—the VFS layer of
Ulix takes care of providing global file descriptors and translating them to
local ones.

Having file descriptors in place, we are now able to provide a function
which allocates a new file descriptor. We want the function to return a file
descriptor for a given generic pipe and mode (either reading or writing).

25a 〈function prototypes 15b〉+≡
int pipefs_get_fd(struct pipe *pipe, short mode);

Its implementation is straightforward. We look at each entry in the
pipefs_filestats array and identify if it is unused. Once we find a free
one, we set its elements to the function’s arguments and return the index
which represents the file descriptor. If all entries are used, we return -1.

25b 〈function implementations 15c〉+≡
int pipefs_get_fd(struct pipe *pipe, short mode) {
if (mode != O_RDONLY && mode != O_WRONLY) return -1;
for (int i = 0; i < PIPEFS_MAX_FILES; i++) {
struct pipefs_filestat *st = &pipefs_filestats[i];
if (st->pipe == NULL) {
st->pipe = pipe;
st->mode = mode;
〈pipefs_get_fd: update counters 25c〉
return i;

}
}
return -1;

}

After associating a new file descriptor with a pipe, we have to update the
counter of the generic pipe which track the number of readers and writers.
We increment the nreaders or nwriters counter, respectively.

25c 〈pipefs_get_fd: update counters 25c〉≡
mutex_lock(pipe->lock);
if (mode == O_RDONLY) {
pipe->nreaders++;

} else {
pipe->nwriters++;

}
mutex_unlock(pipe->lock);
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4.2.2 Allocating inodes for Anonymous Pipes

Before we can use file descriptors, we need a way to create pipes they can
refer to. In section 4.1, where we implemented generic pipes, we defined a
function pipe_new to get a new pipe from the pool. That function requires
a pointer to an inode. When we are about to create a generic pipe to back
a named pipe, we already have that inode, it is present in the file system we
want that named pipe to be created on, but for anonymous pipes, we have
to create an inode in the pipe file system.

Just like file descriptors, the operating system has a fixed number of
inodes we can use.

26a 〈global variables 16b〉+≡
struct int_minix2_inode pipefs_inodes[PIPEFS_MAX_INODES] = {{ 0 }};

26b 〈constants 15e〉+≡
#define PIPEFS_MAX_INODES 256

The function pipefs_get_inode finds a free inode in the pool and returns
a pointer to it. An inode is considered free when its reference counter is 0.
The counter never exceeds 1. The counting variables of the generic pipe are
used for detailed tracking.

26c 〈function prototypes 15b〉+≡
struct int_minix2_inode *pipefs_get_inode();

26d 〈function implementations 15c〉+≡
struct int_minix2_inode *pipefs_get_inode() {
for (int i = 0; i < PIPEFS_MAX_INODES; i++) {
struct int_minix2_inode *inode = &pipefs_inodes[i];
if (inode->refcount == 0) {
inode->refcount = 1;
return inode;

}
}
return NULL;

}

We initialize the table by setting the inode number and the number of
links pointing to the inode. The first inode is used for the root directory
entry (.) and the second is used for the parent directory entry (..) in the
pipe file system.
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27a 〈initialize kernel global variables 16a〉+≡
for (int i = 0; i < PIPEFS_MAX_INODES; i++) {
pipefs_inodes[i].ino = i + 1;
pipefs_inodes[i].i_nlinks = 1;

}

pipefs_inodes[0].refcount = 1; // .
pipefs_inodes[0].i_mode = S_IFDIR | 0550;
pipefs_inodes[1].refcount = 1; // ..
pipefs_inodes[1].i_mode = S_IFDIR | 0550;

4.2.3 Opening a Named Pipe

A named pipe is opened using the open function with the path to the named
pipe and the opening mode. Because opening a file is specific to the file
system, each file system provides its own implementation. In Ulix, the Minix
file system is the only one we have to extend to add support for named pipes.
When its mx_open function finds out that the inode is for a named pipe,
it delegates the opening process to the pipefs_open_named_pipe function
along with a reference to the inode and the opening mode.

27b 〈function prototypes 15b〉+≡
int pipefs_open_named_pipe(struct int_minix2_inode *inode,

short mode);

27c 〈function implementations 15c〉+≡
int pipefs_open_named_pipe(struct int_minix2_inode *inode,

short mode) {
〈pipefs_open_named_pipe implementation 27d〉

}

This function returns a file descriptor for the pipe which belongs to the
given inode. If the named pipe is opened for the first time, the inode does
not have a generic pipe associated and we have to allocate a new one.

27d 〈pipefs_open_named_pipe implementation 27d〉≡
struct pipe *pipe = inode->pipe;
if (pipe == NULL) {
if ((pipe = pipe_new(inode)) == NULL) return -1;
inode->pipe = pipe;

}

We use separate code paths depending on whether the pipe is opened for
reading or writing. Remember that opening a named pipe may block the
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calling process (see section 2.2 Creating and Opening a Pipe).

28a 〈pipefs_open_named_pipe implementation 27d〉+≡
mutex_lock(pipe->lock);
if (mode == O_RDONLY) {
for (;;) {
〈pipefs_open_named_pipe: open for reading 28b〉

}
} else {
for (;;) {
〈pipefs_open_named_pipe: open for writing 29b〉

}
}
return -1;

When a process wants to open a pipe for reading, one of the following
conditions must be met to open it immediately without blocking: (a) There
is at least one process which has opened the pipe for writing, or (b) wants
to open the pipe for writing, but is blocked, or (c) there is data inside the
pipe buffer.

The latter condition may sound odd, but it is necessary and valid. Let us
consider the following scenario: A process wants to open a pipe for reading
and is blocked because there is no writer. Another process attempts to
open the pipe for writing and succeeds. As a result, the reading process is
removed from the block queue, but it is not activated yet by the scheduler,
the writing process is still the only active one. The writing process continues,
writes data into the pipe, closes it, and exits eventually. Now the reading
process is activated by the scheduler. Without the last condition, the reading
process would not be able to open the pipe for reading as there are no writing
processes, but it should be, it just happened that the writer exited before
the scheduler assigned CPU time to the reader.

When condition (a) or (c) is met, we just return a new file descriptor.
When condition (b) is met, we additionally unblock all processes currently
blocked at opening.

28b 〈pipefs_open_named_pipe: open for reading 28b〉≡
if (pipe->nwriters > 0 || pipe->len > 0) {
mutex_unlock(pipe->lock);
return pipefs_get_fd(pipe, mode);

}
if (pipe->nopenwrite > 0) {
mutex_unlock(pipe->lock);
int fd = pipefs_get_fd(pipe, mode);
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if (fd == -1) return -1;
while (pipe->open_bq.next != 0) {
deblock(pipe->open_bq.next, &pipe->open_bq);

}
return fd;

}

If no condition is met, we increase the counter of processes wanting to
open the pipe for reading, put the process into blocked state, and resign the
CPU.

29a 〈pipefs_open_named_pipe: open for reading 28b〉+≡
pipe->nopenread++;
block(&pipe->open_bq, TSTATE_WAITIO);
mutex_unlock(pipe->lock);
〈resign〉
mutex_lock(pipe->lock);
pipe->nopenread--;

When the pipe is to be opened for writing, there are just two states that
do not result in blocking. The first is when there is at least one processes
which already has the pipe opened for reading. In this case, we just provide
a new file descriptor.

29b 〈pipefs_open_named_pipe: open for writing 29b〉≡
if (pipe->nreaders > 0) {
mutex_unlock(pipe->lock);
return pipefs_get_fd(pipe, mode);

}

The second state is when there is at least one process attempting to open
the pipe for reading. We also return a file descriptor then, but additionally
we unblock all processes blocked at opening.

29c 〈pipefs_open_named_pipe: open for writing 29b〉+≡
if (pipe->nopenread > 0) {
mutex_unlock(pipe->lock);
int fd = pipefs_get_fd(pipe, mode);
if (fd == -1) return -1;
while (pipe->open_bq.next != 0) {
deblock(pipe->open_bq.next, &pipe->open_bq);

}
return fd;

}

If the pipe cannot be opened for writing right now, we adjust the respec-
tive counter and block the process.
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30a 〈pipefs_open_named_pipe: open for writing 29b〉+≡
pipe->nopenwrite++;
block(&pipe->open_bq, TSTATE_WAITIO);
mutex_unlock(pipe->lock);
〈resign〉
mutex_lock(pipe->lock);
pipe->nopenwrite--;

4.2.4 Opening an Anonymous Pipe

The pipe file system is a real file system which is mounted at /pipe. Each
file represents an anonymous pipe, the file name is the number of the inode
associated with that pipe. For example, an anonymous pipe with inode
number 5 is represented by /pipe/5. When one of these files is opened
with the open function, the VFS layer delegates to the file-system-specific
pipefs_open function.

30b 〈function prototypes 15b〉+≡
int pipefs_open(const char *path, short mode);

30c 〈function implementations 15c〉+≡
int pipefs_open(const char *path, short mode) {
〈pipefs_open implementation 30d〉

}

The function returns a new file descriptor for the anonymous pipe the
path refers to with the given mode. First, we check the provided mode is
valid (either read-only or write-only).

30d 〈pipefs_open implementation 30d〉≡
if (mode != O_RDONLY && mode != O_WRONLY) return -1;

To parse the inode number out of the path and get the corresponding
inode structure, we write a separate function we implement later. With the
inode we can access the pipe associated with it. Remember that we unified
anonymous and named pipes so that an anonymous pipe looks like a named
pipe. In subsection 4.2.3 we implemented a function to open a named pipe,
and we reuse it here.

30e 〈pipefs_open implementation 30d〉+≡
struct int_minix2_inode *inode = pipefs_path_to_inode(path);
if (inode == NULL) { set_errno(EINVAL); return -1; }
return pipefs_open_named_pipe(inode, mode);
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The parsing function takes a path and returns the file descriptor number,
or -1 if the path is malformed.

31a 〈function prototypes 15b〉+≡
struct int_minix2_inode *pipefs_path_to_inode(const char *path);

After sanitizing the input by removing leading slashes and ensuring the
string is not empty, we also make sure the string only contains digits. If
it does, we use the atoi function Ulix provides to convert that string into
an integer. We cannot use atoi directly without checking the string only
consists of digits first because atoi ignores trailing non-digit characters and
we do not want a path like /pipe/5abc to be valid input.

31b 〈function implementations 15c〉+≡
struct int_minix2_inode *pipefs_path_to_inode(const char *path) {
while (*path == ’/’) path++;
if (*path == ’\0’) return NULL;
for (const char *s = path; *s != ’\0’; s++) {
if (*s < ’0’ || *s > ’9’) return NULL;

}
int ino = atoi((char *)path);
if (ino < 3 || ino > PIPEFS_MAX_INODES) return NULL;
return &pipefs_inodes[ino-1];

}

4.2.5 Reopening a File Descriptor

When a process is forked, the child process inherits the parent’s file descrip-
tors. In Ulix, the kernel calls the u_reopen function for each file descriptor
of the parent process to get a new file descriptor to use for the child. As re-
opening is not a generic operation, each file system provides its own function
for reopening a file descriptor, and the pipe file system provides one as well.

31c 〈function prototypes 15b〉+≡
int pipefs_reopen(int fd);

The function takes a file descriptor and returns a new one referring to
the same underlying generic pipe. We already have a function called to get
a file descriptor for a pipe (pipefs_get_fd), all we have to do is to call that
function.

31d 〈function implementations 15c〉+≡
int pipefs_reopen(int fd) {
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if (fd < 0 || fd >= PIPEFS_MAX_FILES) {
set_errno(EINVAL);
return -1;

}
struct pipefs_filestat *st = &pipefs_filestats[fd];
if (st->pipe == NULL) return -1;
return pipefs_get_fd(st->pipe, st->mode);

}

4.2.6 Reading and Writing

With file descriptors and inodes in place, we can now implement the pipe
file system functions for reading and writing. The read function looks like
pipe_read, with the only difference that it takes a file descriptor instead of
a pointer to a pipe.

32a 〈function prototypes 15b〉+≡
int pipefs_read(int fd, void *buf, int nbyte);

The implementation is simple. After checking that the given file descrip-
tor is a valid one and making sure it refers to the read end of the pipe, we
delegate to the pipe_read function with the generic pipe associated with the
file descriptor. That is all we have to do, the read function of the generic
pipe does all the heavy lifting. The main task of the pipefs_read function
is to translate the file descriptor to the generic pipe.

32b 〈function implementations 15c〉+≡
int pipefs_read(int fd, void *buf, int nbyte) {
if (fd < 0 || fd > PIPEFS_MAX_FILES) {
set_errno(EINVAL);
return -1;

}
struct pipefs_filestat *fs = &pipefs_filestats[fd];
if (fs->pipe == NULL || fs->mode != O_RDONLY) return -1;
return pipe_read(fs->pipe, buf, nbyte);

}

Writing is implemented in the same way.

32c 〈function prototypes 15b〉+≡
int pipefs_write(int fd, void *buf, int nbyte);

32d 〈function implementations 15c〉+≡
int pipefs_write(int fd, void *buf, int nbyte) {
if (fd < 0 || fd > PIPEFS_MAX_FILES) {
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set_errno(EINVAL);
return -1;

}
struct pipefs_filestat *fs = &pipefs_filestats[fd];
if (fs->pipe == NULL || fs->mode != O_WRONLY) return -1;
return pipe_write(fs->pipe, buf, nbyte);

}

4.2.7 Closing

When a file descriptor associated with a pipe is closed with the close func-
tion, the virtual file system layer calls the pipefs_close function.

33a 〈function prototypes 15b〉+≡
int pipefs_close(int fd);

33b 〈function implementations 15c〉+≡
int pipefs_close(int fd) {
〈pipefs_close implementation 33c〉

}

33c 〈pipefs_close implementation 33c〉≡
if (fd < 0 || fd > PIPEFS_MAX_FILES) {
set_errno(EINVAL);
return -1;

}
struct pipefs_filestat *st = &pipefs_filestats[fd];
mutex_lock(st->pipe->lock);

Closing a file descriptor means there is one file descriptor less connected
to the pipe, so we update the process counters accordingly.

33d 〈pipefs_close implementation 33c〉+≡
if (st->mode == O_RDONLY) {
st->pipe->nreaders--;

} else {
st->pipe->nwriters--;

}

Now that we decreased the process counters, we check whether the pipe
is still in use and release it if it is not. A pipe is considered to be no longer
in use if all process counters are 0.

33e 〈pipefs_close implementation 33c〉+≡
if (st->pipe->nreaders == 0 && st->pipe->nwriters == 0 &&
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st->pipe->nopenread == 0 && st->pipe->nopenwrite == 0) {
〈pipefs_close: free pipe resources 34a〉

} else {
〈pipefs_close: unblock processes 34b〉

}

To free the pipe’s resources, we first mark the inode as unused by setting
its reference count to 0. We then call the pipe_free function to release
resources for the generic pipe. The code chunk 〈pipefs_close: call inode
onfree function 41b〉 is defined and explained in section 4.4 and is not relevant
right now.

34a 〈pipefs_close: free pipe resources 34a〉≡
〈pipefs_close: call inode onfree function 41b〉
st->pipe->inode->refcount = 0;
st->pipe->inode->onfree = NULL;
pipe_free(st->pipe);

If the pipe is still in use, we may need to unblock processes. More specific,
if the just closed file descriptor was the last reading descriptor, we need to
unblock all blocked writers, and if the just closed file descriptor was the last
writing descriptor, we need to unblock all blocked readers. The unblocked
processes receive an end of file (readers) or EPIPE/SIGPIPE (writers) error,
respectively.

34b 〈pipefs_close: unblock processes 34b〉≡
if (st->mode == O_RDONLY && st->pipe->nwriters > 0) {
while (st->pipe->write_bq.next != 0) {
deblock(st->pipe->write_bq.next, &st->pipe->write_bq);

}
} else if (st->mode & O_WRONLY && st->pipe->nreaders > 0) {
while (st->pipe->read_bq.next != 0) {
deblock(st->pipe->read_bq.next, &st->pipe->read_bq);

}
}

Finally, we can mark the file descriptor as free.

34c 〈pipefs_close implementation 33c〉+≡
mutex_unlock(st->pipe->lock);
st->pipe = NULL;
return 0;
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4.2.8 File Status

There are two functions to retrieve file status information—stat and fstat.
The first takes a path to a file, the latter a file descriptor.

35a 〈function prototypes 15b〉+≡
int pipefs_stat(const char *path, struct stat *buf);
int pipefs_fstat(int fd, struct stat *buf);

We begin with the implementation of pipefs_fstat. From the file de-
scriptor we derive the underlying generic pipe and call the pipe_stat func-
tion to fill the stat structure.

35b 〈function implementations 15c〉+≡
int pipefs_fstat(int fd, struct stat *buf) {
if (fd < 0 || fd >= PIPEFS_MAX_FILES) {
set_errno(EINVAL);
return -1;

}
struct pipefs_filestat *st = &pipefs_filestats[fd];
if (st->pipe == NULL) return -1;
return pipe_stat(st->pipe, buf);

}

In pipefs_stat, taking a path instead of a file descriptor, we need to
handle two special paths: the root directory (.) and the parent directory
(..).

35c 〈function implementations 15c〉+≡
int pipefs_stat(const char *path, struct stat *buf) {
〈pipefs_stat implementation 35d〉

}

If the given path is one of these special cases, we fill the structure man-
ually from the inodes we reserved for these directories (see subsection 4.2.2
Allocating inodes for Anonymous Pipes).

35d 〈pipefs_stat implementation 35d〉≡
struct int_minix2_inode *inode = NULL;
if (strequal(path, "/") || strequal(path, "/.")) {
inode = &pipefs_inodes[0];

} else if (strequal(path, "/..")) {
inode = &pipefs_inodes[1];

}
if (inode != NULL) {

buf->st_ino = inode->ino;
buf->st_dev = inode->device;
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buf->st_rdev = 0;
buf->st_mode = inode->i_mode;
buf->st_nlink = inode->i_nlinks;
buf->st_uid = inode->i_uid;
buf->st_gid = inode->i_gid;
buf->st_size = inode->i_size;
buf->st_atime = inode->i_atime;
buf->st_ctime = inode->i_ctime;
buf->st_mtime = inode->i_mtime;
return 0;

}

Otherwise, we try to get the inode the path refers to and delegate to
pipe_stat with the pipe the inode is assigned with.

36a 〈pipefs_stat implementation 35d〉+≡
inode = pipefs_path_to_inode(path);
if (inode == NULL) { set_errno(EINVAL); return -1; }
return pipe_stat(inode->pipe, buf);

4.2.9 Directory Listing

In order to support listing the contents of the pipe file system root directory,
we have to implement the getdent function, which is part of the Ulix VFS
layer.

36b 〈function prototypes 15b〉+≡
int pipefs_getdent(const char *path, int index,

struct dir_entry *buf);

The ls program in Ulix to print a directory listing calls the getdent

function with index 0 to get the first entry in the directory, then with index
1 to get the second entry and so forth, until it returns -1 to indicate that
there are no more entries in the directory.

36c 〈function implementations 15c〉+≡
int pipefs_getdent(const char *path, int index,

struct dir_entry *buf) {
〈pipefs_getdent implementation 37a〉

}

The first two entries are designated for the directory itself (.) and for
the parent directory (..). Remember that in subsection 4.2.2 we reserved
the first and second inode for these entries. If the index is 0 or 1, we fill the
dir_entry structure manually.
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37a 〈pipefs_getdent implementation 37a〉≡
if (index == 0) {
buf->inode = 1;
sprintf(buf->filename, ".");
return 0;

}
if (index == 1) {
buf->inode = 2;
sprintf(buf->filename, "..");
return 0;

}

Each anonymous pipe is represented by a file in the root directory of the
pipe file system (see section 3.2 The Pipe File System), and each anonymous
pipe has an inode in the pipe file system. That inode is used to fill the
dir_entry structure. We only list inodes that are in use, i.e. that have a
reference count greater than 0. The file name is set to the inode number in
decimal notation.

37b 〈pipefs_getdent implementation 37a〉+≡
index -= 2;
for (int i = 2; i < PIPEFS_MAX_INODES; i++) {
struct int_minix2_inode *inode = &pipefs_inodes[i];
if (inode->refcount == 0) continue;
if (index == 0) {
buf->inode = inode->ino;
sprintf(buf->filename, "%d", inode->ino);
return 0;

}
index--;

}
return -1;

4.3 Integration into the Ulix VFS

Ulix does not provide an interface to add new file systems to the virtual
file system layer at runtime, neither does the literate program provide code
chunks to integrate new file systems easily. We have to modify the original
code chunks to add the pipe file system.

First, we add a constant to identify the pipe file system.

37c 〈constants 15e〉+≡
#define FS_PIPE 4
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To give it a name, we have to replace the code chunk 374b on page 374
with the following.

38a 〈code chunk 374b replacement 38a〉≡
char *fs_names[] = { "ERROR", "minix", "fat", "dev", "pipe" };

In Ulix, the mount table is static. There is also no code chunk to add
entries to the table, so we have to replace code chunk 369b on page 369 with
the table which mounts the pipe file systems at /pipe.

38b 〈code chunk 369b replacement 38b〉≡
mount_table_entry mount_table[16] = {
{ "/", FS_MINIX, DEV_HDA, 0 },
{ "/mnt/", FS_MINIX, DEV_FD1, 0 },
{ "/tmp/", FS_MINIX, DEV_HDB, 0 },
{ "/dev/", FS_DEV, DEV_NONE, 0 },
{ "/pipe/", FS_PIPE, DEV_NONE, 0 },
{ { 0 } }

};
short current_mounts = 5;

The generic open, read, write, close, and stat functions all have a
switch statement on the file system type, and each file system supporting
that function has a case where the specific function is called. Unfortunately,
there is also no code chunk to append to, we have to add a case for the pipe
file system to the Ulix code manually.

The u_open function is defined in code chunk 376c on page 376. There
we add a case for the pipe file system.

38c 〈u_open: add pipe file system 38c〉≡
case FS_PIPE: return pipefs_open(localpath, oflag);

u_read is defined in code chunk 378b on page 378.

38d 〈u_read: add pipe file system 38d〉≡
case FS_PIPE: return pipefs_read(localfd, buf, nbyte);

u_write is defined in code chunk 379a on page 379.

38e 〈u_write: add pipe file system 38e〉≡
case FS_PIPE: return pipefs_write(localfd, buf, nbyte);

u_close is defined in code chunk 382a on page 382.

38f 〈u_close: add pipe file system 38f〉≡
case FS_PIPE: return pipefs_close(localfd);
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u_stat is defined in code chunk 385d on page 385.

39a 〈u_stat: add pipe file system 39a〉≡
case FS_PIPE: return pipefs_stat(localpath, buf);

4.4 Minix File System Support for Named Pipes

The Minix file system is the only file system in Ulix for which we have to
add support for named pipes. We make use of the layered abstraction we
have created, so we only have to extend one function of the Minix subsystem
to integrate support for named pipes. The function we have to update is
mx_open, which is called by the virtual file system layer when a file on a
Minix file system is opened. The function looks up the corresponding inode
for the given file path, opens the file, and returns a file descriptor.

In order to support opening named pipes, we have to check the inode’s
mode attribute. If it has the S_IFIFO flag set, the inode specifies a named
pipe, and we delegate the opening to the pipefs_open_named_pipe function.
Thus, the mx_open function does not return a file descriptor for the Minix
file system, but a file descriptor for the pipe file system. All further file
operations like read and write are handled by the pipe file system directly.

The mx_open implementation in Ulix is not designed for this purpose.
At the point where we could check the inode’s mode, the implementation
would have already allocated a Minix file descriptor, which we would have
to deallocate if the inode happened to be a named pipe. For this reason, we
replace the existing function with an implementation that does the same,
but has the code reordered to only allocate resources when they are actually
needed.

We replace code chunk 428b on page 428 of the Ulix book with the
following one:

39b 〈code chunk 428b replacement 39b〉≡
int mx_open(int device, const char *path, int oflag) {
〈modified mx_open implementation 50〉

}

The 〈modified mx_open implementation 50〉 code chunk is defined in Ap-
pendix A and includes the 〈mx_open: check for named pipe 40a〉 chunk at the
point where the inode is available and we can check if it represents a named
pipe. The code is thoroughly described in the Ulix book [EF15].
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We determine whether the inode is for a named pipe by inspecting the
inode’s mode attribute having the S_IFIFO flag set. If it is, we call the
pipefs_open_named_pipe function. mx_open is supposed to return a file
descriptor for the Minix file system, but the pipefs_open_named_pipe func-
tion returns a file descriptor for the pipe file system. To make sure it is not
treated as a Minix file descriptor, we turn it into a global file descriptor. The
code chunk 〈mx_open: set onfree function 41c〉 is defined later in this section.

40a 〈mx_open: check for named pipe 40a〉≡
if (inode->i_mode & S_IFIFO) {
int pipefd = pipefs_open_named_pipe(inode, oflag);
if (pipefd == -1) {
inode->refcount = 0;
return -1;

}
〈mx_open: set onfree function 41c〉
return (FS_PIPE << 8) + pipefd;

}

Normally, the conversion into a global file descriptor is done in the u_open
function after the file-system-specific open function returned. We have to
update u_open so that it does not turn it into a global file descriptor if the
returned one is already global (which is the case if mx_open is called for a
named pipe inode). We replace the FS_MINIX case with the following:

40b 〈u_open: Minix file system case 40b〉≡
case FS_MINIX:
fd = mx_open(device, localpath, oflag);
if (fd == -1) return -1;
if (fd >> 8 == 0) fd |= fs << 8;
return fd;

There is one last task we have to do to finish the named pipe support
implementation. Let us consider a opened named pipe where the last file
descriptor is being closed. Because it is the last file descriptor referring to
the pipe, we can free the pipe resources and mark the pipe inode as not in
use. Before we can do that, we have to sync the inode (which only resides in
memory) back to disk. We only have to synchronize inodes of named pipes,
but at the time of closing, the pipe file system does not know whether it is a
named or anonymous pipe. We cannot add the synchronization code in the
pipefs_close function directly.

To solve this, we allow each inode to be associated with a function which
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is called when its reference count drops to 0. We add an element to the
int_minix2_inode structure to save a pointer to that function.

41a 〈int_minix2_inode structure elements 17b〉+≡
void (*onfree)(struct int_minix2_inode *);

In subsection 4.2.7 where we implemented the pipefs_close function,
we used the code chunk 〈pipefs_close: call inode onfree function 41b〉 we
have not defined yet. In that chunk we just call the onfree function if the
inode has one.

41b 〈pipefs_close: call inode onfree function 41b〉≡
if (st->pipe->inode->onfree != NULL) {
st->pipe->inode->onfree(st->pipe->inode);

}

When a named pipe is opened, we set the onfree function to function
mx_sync_inode_on_free.

41c 〈mx_open: set onfree function 41c〉≡
inode->onfree = mx_sync_inode_on_free;

41d 〈function prototypes 15b〉+≡
void mx_sync_inode_on_free(struct int_minix2_inode *inode);

The mx_sync_inode_on_free function, which receives a pointer to the
internal inode structure in its arguments, writes the inode to disk.

41e 〈function implementations 15c〉+≡
void mx_sync_inode_on_free(struct int_minix2_inode *inode) {
mx_write_inode(inode->device, inode->ino,

(struct minix2_inode *)inode);
}

4.5 System Calls and Library Functions

4.5.1 The pipe System Call

An anonymous pipe is created with the pipe system call. The POSIX spec-
ification defines its prototype as:

41f 〈POSIX pipe system call prototype 41f〉≡
int pipe(int fildes[2]);
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The system call takes a two-element integer field as its only argument,
which basically is just an int pointer, and places a file descriptor connected
to the read end of a newly created pipe into the first element of the field and
a file descriptor connected to the write end into the second element.

We define a syscall handler and install it in the operating system. The
handler itself extracts the function argument and dispatches to the u_pipe

function. This follows the convention of implementing system calls in Ulix,
which also defines the __NR_pipe syscall number.

42a 〈syscall prototypes 42a〉≡
void syscall_pipe(context_t *r);

42b 〈syscall functions 42b〉≡
void syscall_pipe(context_t *r) {
r->eax = u_pipe((int *)r->ebx);

}

42c 〈linux system calls 42c〉≡
#define __NR_pipe 42

42d 〈initialize syscalls 42d〉≡
install_syscall_handler(__NR_pipe, syscall_pipe);

The actual implementation is done in the u_pipe function.

42e 〈function prototypes 15b〉+≡
int u_pipe(int fds[2]);

42f 〈function implementations 15c〉+≡
int u_pipe(int fds[2]) {
〈pipe system call implementation 42g〉

}

Before we can create a new generic pipe, we have to allocate an inode
we associate the anonymous pipe with. We defined the pipefs_get_inode

function for this purpose.

42g 〈pipe system call implementation 42g〉≡
struct int_minix2_inode *inode = pipefs_get_inode();
if (inode == NULL) return -1;

Now we are able to actually get a new generic pipe. In the case it fails,
we release the previously allocated inode by setting its reference counter
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back to zero and return. On success, we let the inode know which pipe it
represents, set ownership to the current user, the file type to a FIFO, and
access permissions so only the user can open, read, and write it.

43a 〈pipe system call implementation 42g〉+≡
struct pipe *pipe = pipe_new(inode);
if (pipe == NULL) {
inode->refcount = 0;
return -1;

}
inode->pipe = pipe;
inode->i_size = 0;
inode->i_uid = thread_table[current_task].uid;
inode->i_gid = thread_table[current_task].gid;
inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;

We call the pipefs_get_fd function twice to get two file descriptors—
the first for reading, the second for writing—and place them directly into
the user-supplied field. If one of the file descriptor allocations fails, we undo
previous work and return an error.

43b 〈pipe system call implementation 42g〉+≡
int rfd = pipefs_get_fd(pipe, O_RDONLY);
if (rfd == -1) {
〈pipe system call: cleanup on error 43c〉

}

int wfd = pipefs_get_fd(pipe, O_WRONLY);
if (wfd == -1) {
pipefs_close(rfd);
〈pipe system call: cleanup on error 43c〉

}

fds[0] = gfd2pfd((FS_PIPE << 8) + rfd);
fds[1] = gfd2pfd((FS_PIPE << 8) + wfd);
return 0;

Cleaning up on error consists of marking the inode as not used and freeing
the generic pipe.

43c 〈pipe system call: cleanup on error 43c〉≡
inode->refcount = 0;
inode->pipe = NULL;
mutex_lock(pipe->lock);
pipe_free(pipe);
mutex_unlock(pipe->lock);
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We extend the Ulix standard library with a pipe helper function so user
mode programs have a convenient way to create an anonymous pipe.

44a 〈ulixlib.h 44a〉≡
#define __NR_pipe 42
int pipe(int fds[2]);

44b 〈ulixlib.c 44b〉≡
int pipe(int fds[2]) {
return syscall2(__NR_pipe, (unsigned int)fds);

}

4.5.2 The mknod System Call and mkfifo Function

Creating a named pipe involves creating an inode whose i_mode has the flag
S_IFIFO set. Unix-like operating systems typically provide a function to
create an inode at a given path with given mode and other settings called
mknod, for example to create device files in /dev. POSIX defines its prototype
as:

44c 〈POSIX mknod prototype 44c〉≡
int mknod(const char *path, mode_t mode, dev_t dev);

Ulix does not have a mknod function, so we implement it and use it later
to create a new named pipe. The system call number is the same as on Linux
machines. The actual implementation is done in the u_mknod function.

44d 〈linux system calls 42c〉+≡
#define __NR_mknod 14

44e 〈syscall prototypes 42a〉+≡
void syscall_mknod(context_t *r);

44f 〈syscall functions 42b〉+≡
void syscall_mknod(context_t *r) {
r->eax = u_mknod((char *)r->ebx, (short)r->ecx, (int)r->edx);

}

44g 〈initialize syscalls 42d〉+≡
install_syscall_handler(__NR_mknod, syscall_mknod);

44h 〈function prototypes 15b〉+≡
int u_mknod(char *path, short mode, int dev);
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45a 〈function implementations 15c〉+≡
int u_mknod(char *path, short mode, int dev) {
〈u_mknod implementation 45b〉

}

First of all we check whether there is already an inode at the given path
by calling u_stat, giving us status information on that inode. If the call
succeeds, there is already an inode with that path and we cannot create a
new one, so we return an error.

45b 〈u_mknod implementation 45b〉≡
struct stat st;
if (u_stat(path, &st) != -1) return -1;

The path in the function’s first argument may be a relative one. When the
path does not start with /, it is relative, and we use the relpath_to_abspath
function already present in Ulix to resolve it into an absolute path.

45c 〈u_mknod implementation 45b〉+≡
char abspath[256] = { 0 };
if (*path != ’/’) {
relpath_to_abspath(path, abspath);

} else {
strncpy(abspath, path, sizeof(abspath) - 1);

}

Having the absolute path, the get_dev_and_path function is now able
to determine the device and file system the path points to by inspecting the
mount table.

45d 〈u_mknod implementation 45b〉+≡
short device, fs;
char localpath[256] = { 0 };
get_dev_and_path(abspath, &device, &fs, localpath);
localpath[sizeof(abspath) - 1] = 0;

The inode creation implementation depends on the file system. If the file
system the path points to is Minix, we delegate to the mx_mknod function,
all other file systems do not provide mknod.

45e 〈u_mknod implementation 45b〉+≡
switch (fs) {
case FS_MINIX: return mx_mknod(device, localpath, mode, dev);
default: return -1;
}
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46a 〈function prototypes 15b〉+≡
int mx_mknod(int device, char *path, short mode, int dev);

46b 〈function implementations 15c〉+≡
int mx_mknod(int device, char *path, short mode, int dev) {
〈mx_mknod implementation 46c〉

}

The Minix mknod implementation first tries to get the number of the
inode at the given path to ensure there is really no inode with that path
and then requests a new inode. On failure, or when an inode does exist, it
returns with an error.

46c 〈mx_mknod implementation 46c〉≡
int ino = mx_pathname_to_ino(device, path);
if (ino != -1) return -1;

ino = mx_request_inode(device);
if (ino == -1) return -1;

We initialize the newly requested inode, especially set its mode to the
given one. The dev argument is ignored as Ulix does not support device
special files.

46d 〈mx_mknod implementation 46c〉+≡
struct minix2_inode inode = { 0 };
inode.i_size = 0;
inode.i_atime = inode.i_ctime = inode.i_mtime = system_time;
inode.i_uid = thread_table[current_task].uid;
inode.i_gid = thread_table[current_task].gid;
inode.i_nlinks = 0;
inode.i_mode = mode;

Finally, we write the new inode and link it in the directory.

46e 〈mx_mknod implementation 46c〉+≡
mx_write_inode(device, ino, &inode);
mx_write_link(device, ino, path);
return 0;

Like for every system call, we define a user mode function with the same
name for convenience.

46f 〈ulixlib.h 44a〉+≡
#define __NR_mknod 14
int mknod(char *path, short mode, int dev);
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47a 〈ulixlib.c 44b〉+≡
int mknod(char *path, short mode, int dev) {
return syscall4(__NR_mknod, (unsigned int)path, mode, dev);

}

The implementation of the mkfifo function now does not consist of more
than calling mknod with the S_IFIFO mode flag set.

47b 〈ulixlib.h 44a〉+≡
int mkfifo(char *path, short mode);

47c 〈ulixlib.c 44b〉+≡
int mkfifo(char *path, short mode) {
return mknod(path, S_IFIFO | mode, 0);

}

We also provide a command line program called mkfifo to create a named
pipe.

47d 〈mkfifo.c 47d〉≡
#include "../ulixlib.h"

int main(int argc, char *argv[]) {
if (argc != 2) {
printf("usage: mkfifo file\n");
exit(2);

}
if (mkfifo(argv[1], 0644) == -1) {
printf("mkfifo: failed with errno %d\n", errno);
exit(1);

}
exit(0);

}
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Conclusion

5.1 Testing

Because anonymous and named pipes both use the generic pipe underneath
and the read and write operations are implemented at the generic pipe level,
it is not necessary to test both types thoroughly.

The basic read, write, and blocking functionality is tested by creating a
named pipe and two processes. One process reads from the named pipe and
the other writes into the pipe. By first starting the reading process, followed
by the writing process, the blocking behavior when opening a pipe is tested.
The data written and read by the processes must be identical.

Synchronization and concurrent access is tested with a parent and several
child processes. The parent process creates an anonymous pipe and spawns
NR reading and NW writing processes. These child processes read from and
write into the pipe inside an endless loop, respectively. A writing process
writes the string writer N into the pipe and a reading process prints the
data it reads. A reading process must always read data of the form writer
N when synchronization and atomic writes work correctly. The test is run
with different values for NR and NW .

To test the access of an anonymous pipe via the pipe file system, a process
is started which creates an anonymous pipe and writes the string test. On
another console, the pipe content is read and printed with cat /pipe/3 (3 is
the pipe’s inode number). The output must be identical to the input string.

48
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5.2 Summary

We have extended the Ulix kernel to support anonymous and named pipes.
By implementing the pipe semantics in a generic pipe data structure—which
is the basis of both pipe types—duplicate work has been avoided. The pipe
file system acts as a bridge between user mode and kernel. Further, the pipe
file system provides an interface to debug and introspect pipes.

The implementation has been written and documented using Literate
Programming. In this way, the thesis has contributed to the Ulix operating
system project to provide a Unix-like operating system written as a literate
program to be used in education and teaching.

5.3 Future Work

The Ulix kernel now has support for pipes, but they are not used yet.
An obvious program which would benefit from using pipes is the command
line shell. The current shell in Ulix does not support command pipelines.
In order to actually make use of the advantages of pipes, the kernel has
to provide the dup and dup2 system calls for duplicating file descriptors.
These functions are needed in a pipeline to connect output and input of two
programs.

Another system call not existing in Ulix yet is fstat. The pipe file
system implementation already provides a pipefs_fstat function, but it is
not available in user mode due to the missing system call.

In order to simplify the integration of new file systems into the kernel
and to get rid of code chunk replacements and case statements in the VFS
functions, it would be convenient to be able to register new file systems at
runtime, similar to how system call and fault handlers are added.



Appendix A

Modified mx_open
Implementation

50 〈modified mx_open implementation 50〉≡
int ext_ino = mx_pathname_to_ino(device, path);
if (ext_ino == -1) {
if ((oflag & O_CREAT) != 0) {
ext_ino = mx_creat_empty_file(device, path, 0644);

}
return -1;

}

short file_already_open = false;
int i, int_ino = -1;

if (count_open_files == 0) {
int_ino = 0;

} else {
for (i = 0; i < MAX_INT_INODES; i++) {
if (mx_inodes[i].ino == ext_ino && mx_inodes[i].device == device) {
file_already_open = true;
int_ino = i;
break;

}
}
if (int_ino == -1) int_ino = mx_get_free_inodes_entry();

}

if (int_ino == -1) return -1;
struct int_minix2_inode *inode = &mx_inodes[int_ino];

if (!file_already_open) {

50
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mx_read_inode(device, ext_ino, (struct minix2_inode*) inode);
inode->ino = ext_ino;
inode->device = device;
inode->clean = true;

}
inode->refcount++;

〈mx_open: check for named pipe 40a〉

int mfd = mx_get_free_status_entry();
mx_status[mfd].int_inode = inode;
mx_status[mfd].pos = 0;
mx_status[mfd].mode = oflag;

if ((oflag & O_APPEND) != 0) mx_status[mfd].pos = inode->i_size;
count_open_files++;
if (!file_already_open) count_int_inodes++;
return mfd;
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